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Abstract

If aging is understood as some process of damage accumulation, it does not necessarily lead to increasing
mortality rate. Within the framework of a suggested generalization of the Strehler–Mildwan (1960) [B.L.
Strehler, A.S. Mildvan (1960). General theory of mortality and aging, Science, 132, 14] model, we show that
even for models with monotonically increasing degradation, the mortality rate can still decrease. The
decline in vitality and functions, as manifestation of aging, is modeled by the monotonically decreasing
quality of life function. Using this function, the initial lifetime random variable with ultimately decreasing
mortality rate is ‘weighted’ to result in a new random variable, which is already characterized by the
increasing mortality rate.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Mortality rates of most species increase with time at least in the post-reproductive period.
For advanced ages they sometimes also tend to level off or even to decrease, which among
other reasons, can result due to population heterogeneity [22]. In this note, however, we will
focus only on a homogeneous case. Does a possible deceleration in mortality mean a
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deceleration in aging? This certainly depends on a definition of aging and we show under cer-
tain assumptions that when overall aging of an organism is understood as some accumulation
of damage (additive degradation, which models age related dynamics of bio-markers of aging),
and this is our assumption, it does not always lead to increasing mortality rates. Therefore, we
distinguish between the deterioration per se and its manifestation in the form of the increasing
mortality rate, which is likely but not always to occur. In this way we partially argue with
Finch [8], where he defines senescence as ‘age-related changes in an organism that adversely
affect its vitality and functions, but most important increase the mortality rate etc.’ (see also
Vaupel et al. [23] for the corresponding discussion). We, on the contrary, emphasize the fact
that accumulation of damage of some kind, e.g., deleterious mutation accumulation ([18,14])
eventually defines these age related changes in an organism and, combined with other factors,
determines the shape of the mortality rate. This approach is definitely not a new one, and was
recently supported in a rather general setting by Aalen and Gjessing [3] in their path breaking
paper with a speaking for itself title: understanding the shape of the hazard rate: a process
point of view.

Consider an organism in a post-reproductive phase of life, when the accumulated damage
already noticeably results in negative age related changes. On the other hand, assume that the
mortality rate is leveling off or even decreasing at sufficiently advanced age, which is observed
in humans and some other species. How can these, at first sight, contradictory properties coexist?
Firstly, we show that under certain assumptions this can still be the case, and, secondly, we sug-
gest how, at least formally, to deal with and to interpret the stated contradiction.

Apart from a shape of the mortality rate, the following question can be asked: is the ‘value’ of a
unit of a lifetime of humans at sufficiently advanced ages the same as at previous phases of life?
Humans at advanced ages usually have restrictions of various kinds, showing a substantial
decrease in vitality and functions, which obviously results in a deterioration of a quality of life
at this stage. On the other hand, it is clear that this decline should be somehow reflected in the
shape of the mortality rate or in some similar characteristic even in the case when formally the
mortality rate is leveling off or declining.

In Section 2, using our random vitality model and a generalization of the Strehler–Mildwan
(1960) model [21], we show that even for models with monotonically increasing degradation
the mortality rate can still decrease. In Section 3 we suggest a weighting of a lifetime random
variable based on a quality of life index.

2. Degradation and mortality rate

Let T denote a lifetime random variable with the cumulative distribution function (Cdf) F(t)
and the corresponding mortality rate l(t). Does increasing mortality rate l(t) really describe
aging? In fact, this is a matter of definition: in reliability theory, e.g., the simplest and the most
popular class of aging distributions is the class of distributions with increasing failure rate
(IFR) ([4]). The increasing mortality rate shows that probability of death of organisms increases
with age. This is a rather natural definition, which certainly can be applied to human mortality at
adult ages. Another wider class of aging distributions is a class of distributions with decreasing
m(t) – life expectancy at age t, which is defined via l(t) as
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mðtÞ ¼
Z 1

0

exp �
Z xþt

t
lðuÞdu

� �
dx: ð1Þ

It follows from (1), that m(t) is decreasing when l(u) is increasing. The inverse is generally not true
[10]. Therefore, the decreasing in t life expectancy at age t may be, in fact, the weaker and, in some
sense, the better characteristic of aging.

The foregoing expresses a statistical (black box) point of view, when the only information at
hand is the mortality data. When we speak about biological aging, an underlying biological pro-
cess (processes) of aging should be taken into account. Most researchers agree that aging can be
described by accumulation of some kind of damage, which leads to ‘age-related changes in an
organism that adversely affect its vitality and functions’, and in the current note we shall follow
this interpretation.

Does damage accumulation (e.g., of deleterious mutations) lead to increasing mortality rates?
General progressive models of aging [3], described by underlying monotonically increasing sto-
chastic processes of wear or degradation, often result in increasing mortality rates. But this is
not always the case, which will be illustrated by the following two meaningful models.

3. Model 1. A random vitality model

Assume that at birth (t = 0) an organism acquires an initial unobserved random resource or
vitality R with the Cdf F0(r). Suppose that for each realization of R the deterministic (for simplic-
ity) run out resource W(t) (W(0) = 0) to be called wear (or degradation) monotonically increases.
Death occurs when the wear reaches R, which means that W(T) = R, therefore

F ðtÞ � PrðT 6 tÞ ¼ PrðW ðT Þ 6 W ðtÞÞ ¼ PrðR 6 W ðtÞÞ: ð2Þ

As F0(r) � Pr(R 6 r), substituting W(t) instead of r and taking into account Eq. (2)

F 0ðW ðtÞÞ ¼ PrðR 6 W ðtÞÞ ¼ F ðtÞ: ð3Þ

Thus the lifetime Cdf F(t) is defined in terms of the resource Cdf. F0(r) and the wear W(t). The
mortality rate l(t) can be also defined via Eq. (3) [9]

lðtÞ ¼ f ðtÞ
1� F ðtÞ ¼ W 0ðtÞk0ðW ðtÞÞ; ð4Þ

where k0(t) is the failure rate, which corresponds to the Cdf F0(t) and f(t) = F 0(t) is the correspond-
ing probability density function.

Eq. (4) can be used for analyzing a shape of the mortality rate in this model. Assume, at first,
for simplicity that k0(t) = const, and that W(t) is increasing as a power function ta, 0 < a < 1. It is
easy to see from (4) that the mortality rate l(t) is decreasing. Another example is the Weibull dis-
tribution with a linear failure rate: k0(t) = bt; b > 0. Then l(t) is decreasing, when 0 < a < 0.5. The
linear failure rate is a good approximation for the failure rate of the truncated Normal distribu-
tion, which can be used for F0(r) modeling. Thus, these examples show that although degradation
takes place since the wear function W(t) is increasing, the mortality rate is still decreasing.
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In what follows in this section we will present and justify mathematically a model, which is, in
fact a generalization of the Strehler–Mildwan (1960) model of human mortality.

4. Model 2. Generalization of the Strehler–Mildwan model

As in the previous model, consider a first passage-type setting but with an additional feature of
killing events [20,2,11]: let Wt, t P 0 denote an increasing stochastic process of damage accumu-
lation and let B(t) be a function that defines the corresponding boundary. Death occurs when Wt

exceeds B(t) for the first time. Let W(t) denote the increasing realization of this process. Usually it
is reasonable to assume that B(t) does not change with time: B(t) = B, but for the sake of model
generality we will keep the time dependent notation.

Let Pt, t P 0 be a point process of external instantaneous harmful events (external stresses or
demands for energy) with rate k(t). Following reliability terminology, we will call these events
‘shocks’. Assume, that each shock, independently from the previous ones, results in death with
probability h(t) and is ‘survived’ with the complementary probability 1 � h(t). This can be inter-
preted in the following way: each shock has a random magnitude Yi = Y, i = 1,2, . . . with a com-
mon distribution function W(y). The death at age t occurs when this magnitude exceeds
B(t) �W(t). Therefore

hðtÞ ¼ PrðY > BðtÞ �W ðtÞÞ ¼ 1�WðBðtÞ � W ðtÞÞ: ð5Þ

In the original Strehler–Mildwan (1960) model, which was widely applied to human mortality
data (see [16,17], among others), our B(t) �W(t) had a meaning of remaining at time t vitality.
It was also supposed in this model that this function linearly decreases with age, which can be
a reasonable assumption as some biological markers of human aging can behave linearly [15].
But the crucial unjustified assumption was that the distribution function W(y) is exponential
[26]. The combination of linearity of B(t) �W(t) and of exponentiality of W(y) results in the expo-
nential form of the mortality rate and therefore can not be considered as a justification of the
empirical Gompertz law of human mortality. Arbeev et al. [1] consider modification of this model
and apply it to modeling human cancer incidence rates. They assume that B(t) �W(t) is decreas-
ing exponentially. Our forthcoming approach does not need additional assumptions on W(y) and
B(t) �W(t).

It is well known [19] that the rate (intensity) k(t) does not define an arbitrary point process.
However, it can be defined via its complete intensity function k(t;Ht) [6], which takes into account
the history (‘locations’ of all points) up to time t. Thus, k(t;Ht)dt can be interpreted as a proba-
bility of a shock occurrence in [t, t + dt), given the process history up to t. Therefore, the
conditional mortality rate in our model is

lcðt;HtÞdt ¼ PrfT 2 ½t; t þ dtÞjHt; T ðHtÞP tg ¼ hðtÞkðt;H tÞdt; ð6Þ
where condition T(Ht) P t means that all shocks in [0, t) were survived (for the specific configu-
ration of shocks given by the history Ht). However, Eq. (6) reduces to the conventional, not
history-dependent mortality rate l(t) only for the specific case of the Poisson process

lcðt;HtÞ ¼ hðtÞkðtÞ ¼ lðtÞ: ð7Þ
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Therefore, the corresponding survival function is

F ðtÞ � 1� F ðtÞ ¼ exp �
Z t

0

hðuÞkðuÞdu
� �

ð8Þ

and this completes the proof for the specific case of the Poisson process of shocks. Unfortunately,
Strehler–Mildwan (1960) did not make this crucial assumption, without which their approach is
not mathematically valid.

Remark 1. Taking into account that death can also occur when vitality reaches 0, Eq. (8) can be
obviously modified to

F ðtÞ ¼ exp �
R t

0
hðuÞkðuÞdu

� �
; t 6 tr;

0; t > tr;

(

where tr is defined as the minimal solution of equation B(t) = W(t). If the curves B(t) and W(t) do
not cross, then tr =1. Humans and other organisms do not usually dye directly from accumu-
lated damage, which is a slowly increasing process. Therefore, we can assume that formally
tr =1 and relations (7) and (8) hold.

Remark 2. We have derived Eqs. (7) and (8) for a sample path W(t). A general case of the increas-
ing stochastic process Wt, t P 0 can be also considered by obtaining the corresponding expecta-
tions (with respect to Wt, t P 0) [25,11]. This conditioning can only result in additional
deceleration (decrease) in the observed mortality rate.

Eq. (7) states that the resulting mortality rate is just a simple product of the rate of the Poisson
process and of the probability h(t). Therefore, its shape can be easily analyzed. When B(t) �W(t)
is decreasing, the probability h(t) is increasing with age, which goes in line with the accumulation
of degradation reasoning. If, additionally, the rate of harmful events k(t) is not decreasing, or
decreasing not faster than h(t) is increasing, the resulting mortality rate l(t) is also increasing.
The following possible scenarios can result in the decreasing mortality rate l(t):

a. h(t) is decreasing, as the boundary function B(t) is increasing faster than W(t): additional
vitality is additively ‘earned’ by an organism with age (some relevant general models for this
case can be considered, which is a topic for a special study). Let, for instance, W(t) = wt,
B(t) = bt; 0 < w < b. Then

hðtÞ ¼ PrðY > BðtÞ � W ðtÞÞ ¼ 1�Wððb� wÞtÞ
is decreasing in t.

b. Lifesaving [24,13]: assume that each life, characterized by the initial mortality rate l(t), is
saved (cured) with probability 1 � l(t), 0 < l(t) < 1. Equivalently, a proportion of individuals
who would have died are now resuscitated and given another chance due to improvements in
healthcare. Then in accordance with the foregoing considerations, the resulting mortality
rate is l(t)l(t) and it can decrease at advanced ages due to decreasing l(t).

c. The rate of harmful events k(t) is decreasing. This assumption can be quite realistic, e.g., for
human populations in developed countries when the exposure to stresses of different kinds
decreases at advanced ages.
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Thus, the case of negative aging can still occur within the framework of the suggested general-
ized Streller–Mildwan model. This supports our claim that in general the shape of the mortality
rate alone is not sufficient for defining aging properties, whereas the accumulated damage, which
is responsible for age related changes in an organism, combined with other factors, eventually
determines the shape of the mortality rate. On the other hand, it seems intuitively unnatural that
a degradable object is characterized by the decreasing mortality rate. Therefore, in the next section
a regularization procedure will be suggested which can eventually boil down in the increasing
‘mortality’ rate for a supplementary lifetime random variable.

5. Quality of life function

Denote by q(t) 6 1 – a quality of life index at age t. The function q(t) defines a weight which is
given to a unit increment of life at age t. As it was stated in the Introduction, humans at advanced
ages usually have restrictions of various kinds, showing a substantial deterioration in vitality and
functions, which decrease a quality of life at this stage. Although formally vitality and functions
decrease at all adult ages, the noticeable decline in the corresponding quality of life due to these
processes occurs usually only at relatively advanced ages.

These considerations are somehow similar to the starting point of the Quality Adjusted Life
Years (QALYs) approach (see, e.g., [7]), but the goal is different. This approach is focused on
solving individual health care decision problems, when, for instance, an operation with probabil-
ity p can add a number of quality years (q = 1), but can result in death (q = 0) with probability
1 � p. Without an operation a patient lives with a lower quality of life: q < 1. Our interest is
not in a specific decrease in abilities of individuals with concrete health problems, but rather in
modeling a general trend, which shows the decline in quality of life as a manifestation of senes-
cence. Therefore, we will assume that q(t) = 1, t 2 [0, ts) and that this function monotonically
decreases for t P ts, where ts is the starting point of senescence: a noticeable decline in ‘abilities
and possibilities’.

Let, as previously, T be a lifetime random variable with the Cdf F(t) and the mortality rate l(t).
Denote by Q(T) a ‘weighted lifetime’: a random variable weighted in accordance with the quality
of life function q(t)

QðT Þ ¼
Z T

0

qðuÞdu; ð9Þ

where the function q(t) should be such that Q(1) =1.
It is clear that, when q(t) � 1, the lifetimes are equal: Q(T) = T. Thus, Q(T) already reflects in

an ‘integrated way’ not only the length of life but its quality as well. The distribution function of
Q(T) is easily derived via the generic Cdf F(t)

GðtÞ ¼ PrðQðT Þ 6 tÞ ¼ PrðT 6 Q�1ðtÞÞ ¼ F ðQ�1ðtÞÞ; ð10Þ

where Q�1(t) is the inverse function to Q(t), which exists and increases, as the function Q(t)
increases. In accordance with the definition, the mortality rate lq(t), which corresponds to
G(t) is

M. Finkelstein / Mathematical Biosciences 207 (2007) 104–112 109



Aut
ho

r's
   

pe
rs

on
al

   
co

py

lqðtÞ ¼
dðGðtÞÞ

dtð1� GðtÞÞ ¼
dðF ðQ�1ðtÞÞ

dtð1� F ðQ�1ðtÞÞ

¼ dðF ðQ�1ðtÞÞÞdðQ�1ðtÞÞ
dðQ�1ðtÞÞdt

¼ dðQ�1ðtÞÞ
dt

lðQ�1ðtÞÞ: ð11Þ

Our intention is to show that, for instance, in the case of the ultimately decreasing mortality rate
l(t), which is usually qualified as negative senescence, the function lq(t) can still increase, which is
somehow more intuitively acceptable for models with degradation. It is natural to model q(t) as a
decreasing power function for large t. A generalization to the regularly varying functions [5] is
rather straightforward. Let: q(t)1 t�a, 0 < a < 1. By this notation we mean proportionality.
The case: a = 1 will be considered separately, whereas the range a > 1 is not allowed, as
Q(1) =1. Then

QðtÞ1t�aþ1 ¼ t
k
n; k < n; Q�1ðtÞ1t

n
k:

Therefore, as follows from definition (11), e.g, for a constant mortality rate l(t), the rate lq(t) is
already increasing and lqðtÞ1t

n
k�1. It is easy to see that it will be still increasing even for decreasing

mortality rates: l(t)1 t�B, if 0 < b < 1� k
n. Thus, under some reasonable assumptions a ‘regular-

ization’ procedure has been performed resulting in the increasing rate lq(t). The following exam-
ple deals with the case: a = 1.

Example. Let F(t) = 1 � exp{�lt} and

qðtÞ ¼
1; t 6 ts;

k
ðt�tsÞþk ; t > ts;

(

where k > 0, which means that for sufficiently large t: q(t)1 k/t. Then

QðtÞ ¼
t; t 6 ts;

ts þ k ln t�ts
k þ 1

� 	
 �
; t > ts:

(
ð12Þ

It is easy to see that the inverse function Q�1(t) is linear in [0, ts] and is exponentially increasing for
t > ts. It follows from Eqs. (11) and (12) that lq(t) is also increasing for t > ts and is constant in
[0, ts]. This shape already reflects degradation in the model. The same, in accordance with Eq. (12),
is true for the case when l(t) is decreasing but slower than (Q�1(t)) 0 is increasing.

The quality of life approach is probably more natural to be used for considering the
corresponding life expectancy at time t than for the mortality rate itself. Similar to definition (1)

mqðtÞ ¼
Z 1

0

exp �
Z xþt

t
lqðuÞdu

� �
dx;

which means that mq(t) can decrease when m(t) is constant or increasing.

6. Concluding remarks

Usually mortality rates increase with age as the consequence of age-related changes in an
organism that adversely affect its vitality and functions. Within the framework of the generalized
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Strehler–Mildwan model, we show that theoretically different shapes of mortality rate functions
are possible even with degradation. Modeling of probability h(t) is crucial for this approach.
The assumption that the process of shocks is the Poisson one is important for obtaining the mor-
tality rate in the closed simple form (7). We can generalize the approach to the renewal process of
shocks [12] and also can incorporate in the model the fact that after the successfully survived
shock the level of accumulated damage increases on a random amount, but the corresponding
technical derivations are rather cumbersome.

The suggested change of variables defined by relation (9), captures a natural degradation at
advance ages, which is crudely characterized by the decreasing function q(t).

A general approach developed in this paper can be applied to overall bio-markers of organism’s
aging. However, models of degradation on lower levels (organs, cells) can be also considered, and
these are the topics for future applications.
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